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Concerning Systems for the Generating and Coding of Layered, Tetrahedrally Close-Packed 
Structures of Intermetallic Compounds 

BY CLARA BRINK SHOEMAKER AND DAVID P. SHOEMAKER 

Department of  Chemistry, Oregon State University, Corvallis, Oregon 97331, U.S.A. 

(Received 20 April 1972) 

Planar, tetrahedrally close-packed structures containing pentagon-triangle primary nets are analyzed 
on the basis of their secondary-net tessellations and geometry. Included are: (1) the structures generated 
and coded by Pearson and Shoemaker containing secondary-net tessellations of 44, 36, 3345, and 32434; 
(2) the structures derived by Kripyakevich in which secondary-net tessellations of 344 and 354 occur; 
and (3) some structures, generated here for the first time, with some secondary-net tessellations of 35. We 
have extended the coding scheme of Pearson and Shoemaker to describe the second group of structures. 
It becomes complicated for structures with secondary nets that are not based on two sets of parallel 
lines. However, the simpler code proposed by Kripyakevich does not uniquely define these structures. 
Neither coding scheme adequately describes the third group of structures. 

Introduction 

'Tetrahedrally close-packed' (t.c.p.) structures are 
structures in which all atoms have interpenetrating 
triangulated coordination polyhedra with coordina- 
tion numbers (C.N.) 12, 14, 15 or 16, and in which all 
interstices are tetrahedral. Many of the known ex- 
amples of t.c.p, structures are 'planar ' ;  that is, they are 
generated b7 the alternate stacking of main (primary) 
layers, in mirror planes, consisting of hexagon- and/or 
pentagon-triangle nets of atoms and subsidiary (sec- 
ondary) layers which are less dense and consist of  
triangle, rectangle-triangle, or rectangle nets between 
the mirror planes. The pentagons and the hexagons of  
the primary nets are covered antisymmetrically by the 
pentagons and hexagons of the neighboring primary 
nets, and the atoms of the interleaving secondary nets 
center (in projection) all the pentagons and hexagons 
of the primary nets. 

In Fig. 1, projections are shown of fragments of 
structures which have primary nets consisting in (a) of 

hexagons and triangles and in (b) of pentagons and 
triangles. The secondary nets in these two cases differ 
in geometry. They consist in (a) of (approximate) 
squares and (approximately) equilateral triangles, and 
in (b) of rectangles (ratio of the two sides about 1/3/2) and 
of isosceles triangles with two angles of about 55 ° and 
one angle of about 70 ° (Shoemaker & Shoemaker, 
1969). The polyhedra surrounding the atoms of the 
secondary nets in (a) share triangular faces perpendic- 
ular to all edges of the squares and triangles in the 
secondary net, and in (b) share triangular faces per- 
pendicular to the short edges of the triangles and rec- 
tangles, but share edges in the planes perpendicular to 
the long edges of the net. To emphasize this asymmetry 
in the secondary nets of pentagon structures we will 
indicate the long edges of the nets bv full double lines 
and the short edges by full lines. (These lines connect 
second-nearest neighbors and do not represent bonded 
contacts.) 

In analyzing possible t.c.p, structures it is convenient 
to consider the possible configurations of the secondary 



2958 T E T R A H E D R A L L Y  C L O S E - P A C K E D  I N T E R M E T A L L I C  S T R U C T U R E S  

nets. As has been pointed out by Pearson & Shoe- 
maker (1969), referred to as P & S in the following, the 
entire structure may be generated once the configura- 
tion of the secondary net, and the sequence of penta- 
gons and hexagons in the primary nets, are known. In 
Fig. 2 the tessellations with the Schl~ifli symbols that 
may occur in the secondary nets of structures with 
hexagon-triangle primary nets are shown on the left, 
and the corresponding ones for pentagon-triangle 
primary nets are shown on the right, with examples of 
structures in which they occur. The tessellations 344 
and 354 can only occur in pentagon structures and have 
recently been found in the structure of the X phase, 
occurring in the Mn-Co-Si  system, by Yarmolyuk, 
Kripyakevich & Hladyshevskii (1970) and indepen- 
dently by Manor, Shoemaker & Shoemaker (1972). 
(The secondary nets in the X phase are not strictly 
planar, but this does not change the angles sub- 
stantially.) The second types of 3342 and 3'434 tessella- 
tions for pentagon structures are hypothetical, but 
could certainly occur since they do not imply serious 
distortion of the coordination polyhedra. The 3 s 
tessellation is postulated here for the first time for 
t.c.p, structures, and will be further considered below. 

Structures with pentagon-triangle primary layers and 
secondary nets based on parallel zigzag lines 

The derivation of possible secondary nets for penta- 
gon-triangle primary nets consists of fitting together 

rectangles and isosceles triangles of the above described 
geometry. It is convenient to divide the nets into strips 
running in the Y direction (at an angle between 0 and 
30 ° with the vertical), consisting of rectangles and pairs 
of two triangles. In these strips we will, whenever 
possible, place the rectangle with its long edge approxi- 
mately in the Y direction. Fig. 3 shows how two 
triangles in such a strip ma,, be combined to form what 
we will henceforth refer to as a 'parallelogram', a 
' rhomb'  (rh) or a 'quadrangle' (qu). P & S only con- 
sidered nets which had vertical strips consisting of 
rectangles and pairs of triangles forming parallelo- 
grams. An example of such a structure is given in Fig. 
4, which is the pentagon analog of the a phase. The 
simplified code for this structure, derived by P & S, is: 
P ( +  - ; L R ) ,  in which P indicates that the primary net 
contains pentagons only (no hexagons) and the expres- 
sion in parentheses indicates the configuration of the 
secondary net: + -  indicates that the zigzag lines in 
the horizontal direction go alternately up and down; 
L R  indicates that the zigzag lines in the vertical direc- 
tion are alternately sloped to the left and to the right.* 
The space group is Pbam, Z = 2 6 .  Recently Kripyake- 
vich & Yarmolyuk (1971) have assigred this structure 
to the compound W6(Fe, Si)7. All the structures con- 
sidered by P & S could be generated by sets of parallel 

* We use the symbols + and - ,  rather than the numbers 
in the simplified code of Table 1 of P & S to avoid confusion 
with the symbols used by Kripyakevich (see below). 

/ 
\ ) 

) 

(a) (b) 

I 

Fig. 1. (a) Fragment of a structure with hexagon-triangle primary layers and secondary layers consisting of squares and (ap- 
proximately) equilateral triangles. (b) Fragment of a structure with pentagon-triangle primary layers and secondary layers 
consisting of rectangles and isosceles triangles. The longer edges of the secondary net are indicated by double lines. 



lines and contained only the first four types of tessella- 
tions shown in Fig. 2. 

Kripyakevich (1970), referred to as K below, derived 
and classified several series of structure types, mostly 
hypothetical, by combining fragments of the structures 
of Zr4A13 and MgZn2 (or MgCu2), and called by that 
author 'homologous series'. In his derivations the 

Secondary- net 

tessellations 

secondary-net triangles in the MgZnz structure were 
for simplicity assumed to be equilateral. Three of the 
series derived by him contain only the first four types 
of tessellations (including the second type of 3342 
tessellation) and are among the structures generated 
by P & S. They may be unambiguously described by 
the P & S coding scheme: the series based on Fig. 4(c) 

36 

32434 

MgZn2 MgCu2 Zr4AI3(001),V phase 

M phase 

Hexagon-triangle primary nets 

13-w 

44 

3342 

Pentagon-triangle primary nets 

Zr4AI3 (11 O) 
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II II 
M,I a phases 

Fig. 2. Tessellations that may occur in secondary nets of hexagon-triangle primary nets and pentagon-triangle primary nets 
with some examples of structures in which they occur. The solid dots indicate angles of approximately 70 ° , the circles angles 
of approximately 55 ° . 
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3s4 

3 ~ 

X,C phases 

Pentagon-triangle primary nets 

344 

X,C phases 

Fig. 2 (cont.) 

' rhombs ' .  These two structures are distinguished by 
adding the symbol II and _L, respectively. However, 
these symbols do not uniquely define the structures 
since no difference is made between parallelograms, 
rhombs and quadrangles. Reference t.~ Fig. 7 of K is 
necessary to see the exact configuration of the ribbons. 
Also, for a particular structure it is not obvious in what 
direction the r ibbons should be chosen. 

Fig. 5 shows two examples of the new structures 
derived by K. We have drawn these structures so that 
the vertical strips contain rectangles and parallel- 
ograms in the same configuration as in Fig. 4, but now 
pairs of  triangles that are combined to form rhombs  
also occur in these strips. A rhomb is introduced in a 
vertical strip such that a whole row of rhombs is gener- 

(a) (b) (c) 

Fig. 3. Pairs of isosceles triangles in vertical strips may be 
combined to form (a) a parallelogram, (b) a rhomb (rh) or 
(c) a quadrangle (qu). 

of  K by using the notation A or C of Table 1 of P & S 
and the series based on Fig. 5(a) and (b) of  K by nota- 
tion B of  Table 1 of  P & S. Other types of homologous 
series were derived by K by constructing secondary 
nets out of  ' r ibbons ' ,  alternately consisting of what is 
called by him 'squares '  and ' rhombs '  (but which ac- 
tuaUy are rectangles and rhombs  or parallelograms) 
and o f ' r h o m b s '  only (or actually rhombs and paralello- 
grams).* These new structures contain the tessella- 
tions 434 and 43 s and are therefore not covered by the 
coding scheme of P & S. The short-hand notation given 
by K to these structures is: (q,r)s(q+r)t, in which s is 
the number  of  r ibbons consisting of q 'squares '  and r 
' rhombs '  and t is the number  of  r ibbons containing 
(q+r) ' rhombs ' .  Homologous series are produced by 
changing the values ofq  and r, or ofs  and t. Each symbol 
corresponds to two 'homeotypic '  structures - one 
or thorhombic  and one monoclinic - differing in the 
configuration of the r ibbons of 'squares '  and 

* We will call the strips chosen by K 'ribbons', to distinguish 
them from the strips chosen by us, which may run in a dif- 
ferent direction. 

Y , 

\ / \ / 

\ /  _../ 

Fig. 4. Structure of W6(Fe, Si)7: P(+ - ; LR). In this and fol- 
lowing figures the secondary net is emphasized by full lines 
indicating short edges and full double lines indicating long 
edges. One primary net is outlined in broken lines; the 
pentagons of the next primary net are placed antisym- 
metrically over the pentagons of this net. K symbol: (1,1)l. 
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ated extending in the horizontal (X) direction. The verti- 
cal zigzag lines now contain a short edge wherever a 
rhomb has been inserted. Our original notation could 
be made applicable to these structures by indicating 
where a row of rhombs has been added, as for instance 
for the structure in Fig. 5(a): P ( + - ;  L, rh, R, rh), 
which indicates that it is the pentagon analog of the cr 
phase with two horizontal rows of rhombs inserted. 
K's symbol for this structure is (the ribbons run in 
horizontal direction): (1, 1)12~1t. Our code for the struc- 
ture in Fig. 5(b) is: P{ + - ; (L, rh)2}, and K's notation 
(ribbons vertical): (1, 1)12~L. The composition of both 
structures is R2X3,* the space groups are respectively 

* The composition of a phase in terms of the numbers of 
the atoms with C.N. > 12 (R atoms) and atoms with C.N. = 12 
(X atoms) is derived by K by counting the number n of rhombs 
(or parallelograms), which are parts of e.g. the MgZn2 struc- 
ture and thus contribute R2X4, and the number m of rectangles, 
which are parts of the Zr4A13 structure and thus contribute 
R4X3, leading to the formula R2n+4mX4n+3m. Structures with 
the same ratio of R and X atoms are called 'homeotypic'. 

Pnnm and A2/m (first monoclinic setting), and Z (the 
number of atoms per unit cell) is 50. Recently Krip- 
yakevich & Yarmolyuk (1970) have found that Fig. 
5(b) represents the structure of the C phase 
V 2 ( C o 0 . 5 7 8 i 0 . 4 3 ) 3 .  

K's structure (1,1)a2zll is given in Fig. 6(a); the com- 
position is RlaX23 , Z = 7 4 ,  and the space group is 
Pbam. It is the pentagon analog of the a phase with two 
consecutive rows of rhombs inserted: 
P { + - ;  L(rh)2R(rh)2). The structure of Fig. 6(b) is 
homeotypic; its space group is P2/m, Z = 3 7 .  Nota- 
tions: (1,2)~3~Z and P { + -  ; L(rh)2}. 

A third structure of composition R14X23 is given in 
Fig. 7(a). Although it is uniquely defined by the symbol 
P { ( + - - ) 2 ;  (L, rh)2} its unit cell is actually smaller 
than indicated by this symbol, as shown by the choice 
of axes X ' ,Y  rather than X,Y. Its space group in the 
latter axial system is A2/m, Z =  74, and it is presumably 
K's structure (1,1)~22±. The shaded row in the X' 
direction represents a new type of basal row, which 
may be used to derive other structures. 

\ / \ / ~ \ / \ / 

\ I / . ~ , \ I ~ ' \ 

/ \ / \ ~ /' \ / \ 

\ / _ , \ / ~ /  . \ / 

v \ / \ /  
L _ /  ;, 

X ~ 

(a) (b) 

\ / 

Fig. 5. (a) Hypothetical structure: P ( + -  ;L,  rh, R, rh). Kripyakevich designation (ribbons horizontal): (1,1)12111. (b) The 
structure of the C phase: P{+ - ; (L, rh)2}. Kripyakevich designation (ribbons vertical): (1,1)121J-. 
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Structures based on secondary nets of non-parallel zig- 
zag lines 

Although these studies were inspired by the determina- 
tion of the structure of the X phase, R~4Xza, none of 
the three homeotypic structures of that composition 
which we have described so far corresponds to the X- 
phase structure. In order to derive that structure we 
have to include in our vertical strips pairs of triangles 
forming 'quadrangles' [Fig. 3(c)] and indicate precisely 

\ / \ / 

/ " 

\ / /  / 

\ 
/ 

/ I 

/' \ ~ /  \ 

! \ \ / 

X 
(a) 

Fig. 6. (a) Hypothetical structure" P { + - "  L(rh)2R(rh)2}. 
Kripyakevich designation (ribbons horizontal): (l,l)t22N. 

.2 ! 

, / / 
\ , _ \ / k \ 

, / \ I 

X 

(b) 

Fig. 6 (cont.). (b) Hypothetical structure: P { + - ;  L(rh)z}. 
Kripyakevich notation (ribbons vertical): (1,2)131 _1_. 

how the successive strips are built up. For instance the 
structure of Fig. 7(a) on the axial system X', Y could 
be defined by the symbol P{(L, rh)2; (qu)4; (qu)4}, 
where now the compositions of successive strips in 
vertical direction are given. Fig. 7(b), which represents 
the structure of the X phase, could be defined as 
P[{ R, (qu)2, rh}; (qu)4; (qu, rh, L, qu)].* (The space group 
for the X phase is Pnnm, Z =  74.) These notations are 
now becoming very elaborate and are not very useful 
any more as shorthand codes. K's symbol for the X 
phase would be (ribbons horizontal) (1,2)13x[1, but this 
symbol would apply also for the structure given in Fig. 
7(c). Our code for Fig. 7(c) would be: P { ( + - - ) z ;  
L, rh, R, rh}. Composition RzX3, Z =  150, space group 
B2/m (C~,,). 

Structures with 3 s tessellations of the secondary net 

The study of the X phase has revealed that in planar 
t.c.p, structures with pentagon-triangle primary layers, 

* It should be noted that the structure of a vertical strip 
is not uniquely defined by the part of the symbol referring to 
it, owing to different possible orientations of rh and/or qu; 
the unique definition depends also on necessary relationships 
between successive strips arranged as defined by the rest of 
the symbol. 
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tessellations of the type 434 and 435 can occur in the 
secondary layers without too much distortion of the 
coordination polyhedra. One might wonder if tessella- 

X 
(a) 

:i , \  7" :/-\ 

::7.::i".:. 

g 

X 
(b) 

Fig. 7. (a) Hypothetical structure: P { ( + - - ) 2 ;  (L, rh)2}. 
Kripyakevich designation (ribbons 'vertical): (1,1)1221. A 
smaller unit cell is obtained by using the shaded row as 
basal row. (b) The structure of the X phase. Kripyakevich 
notation (ribbons horizontal): (1,2)131J1. The shaded row is 
identical with the shaded row in Fig. 7(a). 

X 
(c) 

Fig. 7 (cont.). (c) Hypothetical structure P { ( + - - ) 2 ;  L, rh, 
R, rh)}. Kripyakevich notation as in Fig. 7(b). 

tions of the type 35 (Fig. 2) could also occur, formed 
by five isosceles triangles grouped together around a 
fivefold axis and thus forming angles of 72 ° (which is 
only about 2 ° larger than the angle occurring in the 
MgZn2-type structures). Starting with the shaded row 
in Fig. 7(a) a monoclinic structure may be constructed 
which contains some 35 tessellations of the secondary 
net, as shown in Fig. 8(a). Composition R2X3, Z =  150, 
space group A2/m (C3zh). 

A 35 tessellation is formed by five interpenetrating 
icosahedra alternating in the Z direction with five 
interpenetrating triangulated C.N. 16 polyhedra 
( 'Friauf polyhedra'), each group of five polyhedra 
sharing an edge perpendicular to the net at the center 
of the pentagons. Additional vertical rows of inter- 
penetrating icosahedra are formed, centered by the 
atoms of the secondary net. A finite group composed 
of five 'Friauf polyhedra' arranged this way with their 
complete first coordination shells (which include the 
five-membered rings of the C.N. 12 atoms above and 
below) is represented in Fig. 8(b). This complex, which 
contains 47 atoms, does occur as a building block in 
some of the complicated (mostly cubic) structures 
studied by Samson (1968), for instance in the structures 
of fl-MgzA13 and NaCd2. The complex is called by 
Samson the 'VF polyhedron' and is depicted by him 
as shown in Fig. 8(c), which follows from Fig. 8(b) by 
joining up the atoms in a different way. It is not 
known whether an arrangement as shown in Fig. 8(a), 
where five-rings of interpenetrating C.N. 16 poly- 
hedra alternate with five-rings of interpenetrating 
icosahedra, forming an infinite stack, can indeed occur. 
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The structure in Fig. 8(a) might be defined as: 
P{(R, rh3); (qu, rect, qu, rh); (qu, rh, qu, rect)}. Tile 
symbol 'rect' is used for a rectangle with its long edge 
approximately horizontal, and the symbols L and R 
are reserved for the rectangles with the long edges 
approximately vertical. 

Fig. 9 shows three more hypothetical structures 
containing five-membered rings in the secondary 
layers. These structures also contain the second type 
of 32434 tessellation shown in Fig. 2. Fig. 9(a) contains 
X-phase type rows enclosing five-membered rings on 
mirror planes. The space group is Cm2rn  14 (C2v), Z =  112, 
the composition is RllX17. The secondary net of Fig. 
9(b), considered as consisting of pentagons, rectangles 
and triangles, is an example of a planar 4-connected 
net having pentagons, rectangles, and triangles in the 
ratio 1 : 1:1 (Wells, 1968). The examples of such. 4- 
connected nets given by Wells cannot be used for the 
construction of our secondary nets because of our 

f 

X 

(a) 

(b) (c) 
Fig. 8. (a) Hypothetical structure containing 35 tessellations 

of the secondary net. (b) Projection of Samson's VF poly- 
hedron. Full lines connect atoms at Z =  0, broken lines atoms 
at z =  _+½. Full circles represent atoms at z =  _+¼" large 
circles C.N. 16 atoms, small circles C.N. 12 atoms. (c) Atoms 
in Fig. 8(b) connected to give Samson's representation of 
the VF polyhedron. 

- -  t 

' . ~ "  7",,,, 

b i" 

½~ 
(a) 

(b) 
Fig. 9. (a) Hypothetical structure RI~XI~ with secondary-net 

pentagons (35 tessellations) on mirror planes _L X. (b) Hypo- 
thetical structure REX 3 with secondary-net pentagons (35 
tessellations) on mirror planes ± X and ratio of pentagons: 
rectangles : triangles = l : 1 : 1. 
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- --~ , ~  

l .' 3(. ' , ~ ,  ~ i \ / 

a 
(c) 

Fig. 9 (cont.). (c) Hypothetical structure RllX17. 

restrictions that all edges of the pentagons should be 
long, that the rectangles should have two long edges, 
and that the triangles have only one long edge. The 
space group for the structure in Fig. 9(b) is 
Amam 17 (Dzh), Z =  100; the composition is RzX3. In 
Fig. 9(c) the arrangement of the pentagons along the X 
axis is like the arrangement of the VF polyhedra in 

fl-MgzA13 along the [110] axis (Samson, 1968). The 
composition is RaIX17 , Z=224,  space group Amam. 
Since there is no obvious way to divide these structures 
into strips, the derivation of code names becomes 
arbitrary and cumbersome. It is clear that many more 
structures of this type with larger cells could be derived. 
Both the P & S and the K coding scheme are clearly 
inadequate to describe these structures. 

References 

KmPYAKEVmH, P. I. (1970). Kristallografiya, 15, 690. [Soy. 
Phys. Crystallogr. (1971). 15, 596.] 

KPdPYAKEVICH, P. I. & YARMOLYUK, YA. P. (1970). Dop. 
Akad. Nauk Ukr. RSR, A32, 948. 

KPJPYAKEVICH, P. I. & YARMOLYUK, YA. P. (1971). Beeco- 
lo3naa Kono~epent¢ua no Kpucma:rnoxu~fuu Hnmep•eman- 
nu~tecl¢ux CoeOunenu(t, Te~ucbt OoKJtaOoe, dlbeoe, s. 6. 

MANOR, P. C., SHOEMAKER, C. B. & SHOEMAKER, D. P. 
(1972). Acta Cryst. B28, 1211. 

PEARSON, W. B. & SHOEMAKER, C. B. (1969). Acta Cryst. 
B25, 1178. 

SAMSON, S. (1968). In Structural Chemistry and Molecular 
Biology, p. 687. Edited by A. RICH & N. DAVIDSON. San 
Francisco: Freeman. 

SHOEMAKER, C. B. & SHOEMAKER, D. P. (1969). In Devel- 
opments in the Structural Chemistry of Alloy Phases, p. 
117. Edited by B. C. GIESSEN. New York: Plenum Press. 

WELLS, A. F. (1968). Acta Cryst. B24, 50. 
YARMOLYUK, YA. P., KRIPYAKEVICH, P. I. & HLADYSHEV- 

SKII, E. I. (1970). Kristailografiya, 15, 268. [Soy. Phys. 
Crystallogr. (1970). 15, 226.] 

Acta Cryst. (1972). B28, 2965 

The Crystal Structure of Tin(II) Iodide 

BY R. A. HOWIE, W. MOSER* AND I. C. TREVENA 

Department o f  Chemistry, University o f  Aberdeen, OM Aberdeen AB9 2UE, Scotland 

(Received 24 May 1972) 

A complete structural analysis of tin(II) iodide (SnI/) has been carried out on the basis of three-dimen- 
sional X-ray diffraction data and refined to an R value of 0.049. The crystals are monoclinic, space 
group C2/m, with a= 14.17, b=4.535, c= 10-87 A, and fl=92.0 °. The compound is shown to possess a 
unique AX2 layer structure in which the metal atoms occur in two distinct sites. Two-thirds of the tin 
atoms occupy sites similar to those in SnCI2 (PbCI2 type). The remaining tin atoms are in PdClz-type 
chains which interlock with the PbCl2-type part of the structure to give almost perfect octahedral 
coordination. Significant Sn-I distances are all in the range 3.00- 3.25 A. M6ssbauer spectroscopy fails 
to reveal the true complexity of the structure. 

Introduction 

Detailed studies on the preparation of tin(II) iodides 
(to be published elsewhere) afforded crystals of SnI2 
suitable for single-crystal X-ray diffraction. Structural 
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analysis was carried out as part of a wider programme 
to extend the data on the crystal chemistry of tin(II). 
Aylett (1969) suggested that SnI2 and PbI2 have the 
same structure (CdI2 type), while Belotskii, Antipov, 
Nadtochii & Dodik (1969) found that SnI2 and PbI2 
form a continuous series of solid solutions of PbI2 
(CdI2) structure, pure SnI2 having a 'different struc- 
ture'. 


